Radiation-Induced Loss of Salivary Gland Function Is Driven by Cellular Senescence and Prevented by IL6 Modulation.
نویسندگان
چکیده
Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy.
منابع مشابه
Quantitative assessment of salivary gland function by radioisotopic scanning in a randomized trial of Pilocarpine for prevention of radiation induced Xerostomia [Persian]
Introduction: Radioisotope scanning is the best method for objective assessment of salivary gland function. Thus, it was used in a randomized trial of concomitant pilocarpine for assessment of radiation-induced xerostomia, in addition to subjective evaluation by an approved questionnaire and objective standard xerostomia grading. Methods: Patients randomized in placebo-controlled trial of...
متن کاملRadioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats
The aim of this study was to investigate the radioprotective effect of thymol as a natural product against salivary glands dysfunction induced by ionizing radiation in rats. The rats were treated with thymol at dose of 50 mg/Kg before exposure to radiation at dose 15Gy. Salivary gland function was evaluated with radioisotope scintigraphy and then salivary gland to background counts ratio was ca...
متن کاملRadioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats
The aim of this study was to investigate the radioprotective effect of thymol as a natural product against salivary glands dysfunction induced by ionizing radiation in rats. The rats were treated with thymol at dose of 50 mg/Kg before exposure to radiation at dose 15Gy. Salivary gland function was evaluated with radioisotope scintigraphy and then salivary gland to background counts ratio was ca...
متن کاملDelivery of Sonic Hedgehog Gene Repressed Irradiation-induced Cellular Senescence in Salivary Glands by Promoting DNA Repair and Reducing Oxidative Stress
Rationale: Irreversible hypofunction of salivary glands or xerostomia is common in head and neck cancer survivors treated with radiotherapy even when various new techniques are applied to minimize the irradiation (IR) damage. This condition severely impairs the quality of life of patients and can only be temporarily relieved with current treatments. We found recently that transient expression o...
متن کاملRadiation inhibits salivary gland function by promoting STIM1 cleavage by caspase-3 and loss of SOCE through a TRPM2-dependent pathway.
Store-operated Ca2+ entry (SOCE) is critical for salivary gland fluid secretion. We report that radiation treatment caused persistent salivary gland dysfunction by activating a TRPM2-dependent mitochondrial pathway, leading to caspase-3-mediated cleavage of stromal interaction molecule 1 (STIM1) and loss of SOCE. After irradiation, acinar cells from the submandibular glands of TRPM2+/+ , but no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 76 5 شماره
صفحات -
تاریخ انتشار 2016